
Ganglion Blockers

1、神経節における伝達機構

交感神経節における神経伝達様式

節前繊維から遊離された ACh は、節後神経で3相のシナプス電位を生じる。

- 1. nicotinic receptor(n_NAChR)を介する fast EPSP。
- 2. 介在神経の muscarinic receptor(M)を経由して DA receptor(D1) あるいは α2 receptor(α2)を介する IPSP。
- 3. muscarinic receptor を介する slow EPSP。

2、自律神経節に働く薬物

a、神経節刺激薬

nicotine	少量で節後神経の脱分極を引き起こし興奮させる。
TMA	nicotine の2倍強い。

nicotine

nicotine

臓器	薬理作用	中毒量での症状
中枢神経	大脳皮質の興奮、振戦。	悪心、嘔吐、下痢、
	化学受容器の刺激による呼吸の興	視聴覚障害、
	奮。	呼吸困難、血圧下降、
	抗利尿ホルモン分泌による尿量減少。	呼吸麻痺による死亡
循環器	血圧上昇、頻脈	
消化器	運動亢進、下痢	
分泌腺	分泌促進	

b、神経節遮断薬

交感神経節と副交感神経節の両方を遮断する。 従って正常時に優位である方の機能の遮断効果が強くでる。

競合的節遮断薬	TMA hexamethomium (C6) trimethaphan
脱分極性節遮断薬	nicotine

1) hexamethonium (C6)

$$H_3C$$
 H_3C
 $N^+(CH_2)_6 N^+$
 CH_3
 H_3C

高血圧治療薬として最初に導入された薬物である。 C10 にすると、神経筋接合部の遮断薬となる。

2) Trimethaphan

作用時間が短いので、手術時の出血防止に用いられる。

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

trimethaphan

3、臓器における自律神経の優位性

臓器	優位性	遮断薬の効果
心臓	副交感	頻脈
細動脈	交感	拡張
静脈	交感	拡張
瞳孔	副交感	散瞳
毛様体筋	副交感	調節麻痺
消化管	副交感	運動抑制
膀胱	副交感	排尿困難
唾液腺	副交感	口渇